Scalar Arithmetic Multiple Data
Customizable Precision for Deep Neural Networks

Andrew Anderson and Michael Doyle and David Gregg

Lero, Trinity College Dublin
{aanderso,mjdoyle,dgregg}@tcd.ie

ARITH, Kyoto
June 2019
DNN Convolution

Figure: Multi-channel multi-kernel convolution
DNN Convolution

for (unsigned m = 0; m < kernels; m++)
 for (unsigned h = 0; h < img_h/stride_h; h++)
 for (unsigned w = 0; w < img_w/stride_w; w++)
 for (unsigned c = 0; c < channels; c++)
 for (unsigned y = 0; y < k; y++)
 for (unsigned x = 0; x < k; x++)
 output[m][h][w] +=
 input[c][((h * stride_h) + y) - (k/2)]
 [((w * stride_w) + x) - (k/2)]
 *
 kernel[m][c][y][x];
Quantized Arithmetic

DNN weights occupy huge amounts of space in FP32
VGG-19 Network: 548 MB

Figure: But we want to use them on this!

OpenMV Cam – 512 KB RAM, 2 MB ROM, 216 MHZ Cortex-M7
Quantized Arithmetic

In Deep Learning we have it very easy!

► Network training compensates for arithmetic error
► Often, noisy arithmetic actually **helps**! (with overfitting)

Lots of research about how harshly DNN weights can be quantized

► Can go to integer (eventually!)
► Can go down to one (1) bit ('binarized' nets)
► But we don’t want to do all our work on FPGA...
► In fact, commodity hardware is ideal.
The Simple Approach

Convert to native arithmetic

\[
\begin{align*}
4\text{x}0000 & \quad 0010 & \quad 0000 & \quad 1110 & \quad 0000 & \quad 1001 & \quad 0000 & \quad 0101 \\
4\text{x}0000 & \quad 0101 & \quad 0000 & \quad 1101 & \quad 0000 & \quad 0010 & \quad 0000 & \quad 1011
\end{align*}
\]

Figure: uint4_t expanded to uint8_t

- Can use native SIMD
- Space overhead only in registers (not memory)
- Extra precision in intermediate results (for free)
- Easy to mix and match number formats (e.g. \(\text{uint6_t} + \text{uint4_t} \))
Quantized Arithmetic

4 × 4-bit words packed into a 16-bit scalar register

Figure: Example SWAR operation.
SIMD Within A Register (SWAR)

Dealing with overflow

\[
\begin{array}{c}
X010X110X001X101 \\
\hline
0XXX1XXX1XXX0XXX
\end{array}
\]

\[
\begin{array}{c}
X101X101X010X011 \\
\hline
0XXX1XXX0XXX1XXX
\end{array}
\]

masked add

\[
\begin{array}{c}
0111100100111000 \\
\hline
0XXX0XXX1XXX1XXX
\end{array}
\]

xor

\[
\begin{array}{c}
0111100110110000 \\
\hline
0XXX0XXX1XXX1XXX
\end{array}
\]

Figure: Spacer bits

Temporary spacer bits are spacer bits in intermediate values that don’t get written to the data format in memory.
SIMD Within A Register (SWAR)

Figure: Convolutional substructure in scalar integer multiplication

Long multiplication is discrete convolution over digit sequences
$k \times i$ subword multiplies and $(k - 1) \times (i - 1)$ additions with a single instruction
Results

Figure: Performance with Temporary Spacer bits
Results

Figure: Performance with Permanent Spacer bits
Future Work

- All-SAMD network (nonlinearities & utility ops)
- Codesign HW Integer Support Instructions
- GPU (but microcontrollers don’t have GPUs (yet!))
Thanks for listening!