A Cost-Efficient Iterative Truncated Logarithmic Multiplication for Convolutional Neural Networks

HyunJin Kim, Min Soo Kim, Alberto A. Del Barrio, Nader Bagherzadeh

Approximate multiplication

- Well applied to inference of simple neural networks.
- But high complex convolutional neural networks (CNNs) require high accurate computation.

High accurate computation with low cost

- Iterative structure can enhance the accuracy.
- Repeating basic blocks add significant cost.
- Let us reduce cost of basic blocks without degrading performance of CNNs!!

Summary of Proposed Design

-3-

Basics of Mitchell Algorithm (Multiplication)

$$A = (1 + x_A) \cdot 2^{k_A}, B = (1 + x_B) \cdot 2^{k_B}$$

$$log_2(A \cdot B) = k_A + k_B + log_2((1 + x_A) \cdot (1 + x_B)))$$

How to approximate it?

$$C = (1 + x_C) \cdot 2^{k_C} \text{ and } C = A \cdot B,$$

$$\begin{cases} k_C = k_A + k_B + 1, \ x_C = x_A + x_B - 1, \ x_A + x_B \ge 1 \\ k_C = k_A + k_B, \ x_C = x_A + x_B, \ x_A + x_B < 1. \end{cases}$$

$$\therefore rerr = \frac{MUL_{exact} - MUL_{appr}}{MUL_{exact}} = \begin{cases} \frac{(1-x_A)\cdot(1-x_B)}{(1+x_A)\cdot(1+x_B)}, & \text{if } x_A + x_B \ge 1\\ \frac{x_A\cdot x_B}{(1+x_A)\cdot(1+x_B)}, & \text{if } x_A + x_B < 1. \end{cases}$$

Error depends on sum of fractions.

Structure of Proposed Design

-5-

Error Term Calculator

$$\begin{cases} A(2) = (1 - x_A) \cdot 2^{k_A} - 1, \\ B(2) = (1 - x_B) \cdot 2^{k_B} - 1, \\ \text{if } x_{A(1)} + x_{B(1)} + 2^{-n_1} \ge 1 \\ A(2) = x_A \cdot 2^{k_A}, B(2) = x_B \cdot 2^{k_B}, \\ \text{if } x_{A(1)} + x_{B(1)} + 2^{-n_1} < 1. \end{cases}$$

$$A[n-2:0] \xrightarrow{0011001_2} \underbrace{1100110_2}_{\text{Generator}} \underbrace{00000110_2}_{\text{Generator}} \\ A[n-2:0] \xrightarrow{001000_2} \underbrace{Mask}_{\text{Generator}} \underbrace{0001111_2}_{\text{Generator}} \underbrace{00000110_2}_{\text{range}} \\ \end{cases}$$

Summary of Error Analysis

n	n_1	$rerr_{max}$	$rerr_{min}$	$rerr_{avg}$	$ rerr _{avg}$
8	4 5 6 7 8	$\begin{array}{c} 11.1\% \\ 11.1\% \\ 11.1\% \\ 11.1\% \\ 11.1\% \\ 11.1\% \end{array}$	-6.25% -3.33% -2.50% -2.08% -1.88%	-1.09% -0.83% -0.58% -0.32% -0.06%	1.77% 1.11% 0.76% 0.57% 0.44%
16	4 5 6 7 8	11.1% 11.1% 11.1% 11.1% 11.1%	-6.25% -3.33% -2.50% -2.08% -1.88%	$\begin{array}{c} 0.10\% \\ 0.11\% \\ 0.11\% \\ 0.12\% \\ 0.12\% \end{array}$	1.44% 0.77% 0.46% 0.33% 0.28%
32	4 5 6 7 8	$\begin{array}{c} 11.1\% \\ 11.1\% \\ 11.1\% \\ 11.1\% \\ 11.1\% \\ 11.1\% \end{array}$	-6.25% -3.33% -2.50% -2.08% -1.88%	$0.11\% \\ 0.12\% \\ 0.12\% \\ 0.13\% \\ 0.13\%$	$\begin{array}{c} 1.44\% \\ 0.77\% \\ 0.46\% \\ 0.33\% \\ 0.28\% \end{array}$
	n 8 16 32	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Comparison of Error and Cost

Retter <i>rerr</i>	n	design	$rerr_{max}$ (%)	$\begin{array}{c} rerr_{avg} \\ (\%) \end{array}$	critical path (<i>ns</i>)	area (um ²)	power (uW)
		Booth ^a	0	0	1.3	613	403
compared to other	8	MM ^b	11.11	3.76	1.3	446	217
approximate		PROP ^d	6.25	<u>0.83</u> -1.09	2.6	786	<u> </u>
nultipliers	16	Booth ^a	0	0	2.8	2,507	1,760
		MM^b	11.11	3.85	2.3	1,168	602
	10	IM ^c	6.25	0.99	3.7	2,901	1,410
		PROP ^e	11.11	0.11	5.1	1,638	739
		Booth ^a	0	0	5.4	10,139	6,750
	32	MM^b	11.11	3.85	4.2	3,418	1,640
Great cost reduction		IM ^c	6.25	0.99	6.5	7,674	3,680
		PROP ^e	11.11	0.12	7.9	3,102	1,370
aver Deeth multiplier							

UVEI DUUL when *n*=16 and *n*=32

^a Radix-4 Booth multiplier [23]

^b Mitchell multiplier [16]

- ^c Two-stage Babic's iterative multiplier [17] ^d Proposed two-stage multiplier with $n_1 = 4, n_2 = 2$
- ^e Proposed two-stage multiplier with $n_1 = 6, n_2 = 2$

Comparison of Accuracy on CNNs

When $n_f=6$ and $n_f=2$, there is no significant accuracy drop in CNN models, which outperforms original Mitchell multiplier.

Model	Dataset	Multiplier	Top-1 (%)	Top-5 (%)
NiN [11]		FLOAT ^a	89.4	-
		FIXED ^b	89.4	-
	CIFAR-10	MM ^c	88.7	-
		IM ^d	89.4	-
		PROP ^e	89.5	-
AlexNet [12] In		FLOAT ^a	57.0	81.3
		FIXED ^b	57.0	81.3
	ImageNet	MM ^c	56.8	80.8
		IM ^d	56.8	81.3
		PROP ^e	56.9	81.3
GoogLeNet [13]		FLOAT ^a	68.3	88.4
		FIXED ^b	68.3	88.4
	ImageNet	MM^d	67.1	87.5
		IM ^d	68.3	88.2
		PROP ^e	68.3	88.3
ResNet-50 [14]		FLOAT ^a	74.3	90.9
		FIXED ^b	74.2	90.9
	ImageNet	MM ^c	72.4	90.0
		IM ^d	73.9	90.9
		PROP ^e	73.8	90.6

For *n_f*=8, top-5 accuracy of ResNet-50 reaches up to 90.9%.

^a Original Caffe using floating-point multiplications

^b Fixed-point multiplications

^c Mitchell multipliers [2]

^d Two-stage Babic's iterative multipliers [7]

^e Proposed two-stage multiplier with $n_1 = 6, n_2 = 2$

Conclusion

We proposes the iterative truncated logarithmic multiplication, and error & cost and application of CNNs are analyzed.

A Cost-Efficient Iterative Truncated Logarithmic Multiplication for Convolutional Neural Networks

HyunJin Kim, Min Soo Kim, Alberto A. Del Barrio, Nader Bagherzadeh