HyPoRes: An Hybrid Representation System for ECC

P. Martins ${ }^{1} \quad$ J. Marrez ${ }^{2} \quad$ J.-C. Bajard ${ }^{2} \quad$ L. Sousa ${ }^{1}$

${ }^{1}$ INESC-ID, Instituto Superior Técnico, Univ. Lisboa
${ }^{2}$ Sorbonnes Université, CNRS, LIP6, Paris, France

26th IEEE Symposium on Computer Arithmetic

Acknowledgement

This work was partially supported by Portuguese funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019 and by the Ph.D. grant with reference SFRH/BD/103791/2014; by the ANR grant ARRAND
15-CE39-0002-01; through the Pessoa/Hubert Curien programme with reference 4335 (FCT)/40832XC (CAMPUSFRANCE); and by EU's Horizon 2020 research and innovation programme under grant agreement No. 779391 (FutureTPM).

Table of Contents

Motivation
Elliptic Curve Cryptography
Residue Number System
Background
Montgomery Reduction
Hybrid-Positional Residue Number System
Proposed HyPoRes

Experimental Results

Protection against SCAs
Conclusion

Elliptic Curve Cryptography

Point addition of two points over an EC defined in \mathbb{R}

- Security based on the difficulty of computing n from [n] P and P for curves defined over a finite field \mathbb{F}_{P}

Residue Number System

RNS breaks arithmetic modulo $B_{1}=b_{1,0} \times \ldots \times b_{1, h_{1}-1}$ down to arithmetic modulo $b_{1,0}, \ldots, b_{1, h_{1}-1}$

Bridging the Gap

ECC Operations

RNS parallel arithmetic

- Montgomery Reduction Maps operations in \mathbb{F}_{P} to $\mathbb{Z}_{B_{1}}$ for any P with complexity of $\mathcal{O}\left(\log _{2}^{2} P\right)$;
- Hybrid-Positional Residue Number System (HPR) Uses $P=B_{1}^{n}-\beta$ to reduce complexity to $\mathcal{O}\left(\log _{2}^{3 / 2} P\right)$.

Bridging the Gap

- Montgomery Reduction Maps operations in \mathbb{F}_{P} to $\mathbb{Z}_{B_{1}}$ for any P with complexity of $\mathcal{O}\left(\log _{2}^{2} P\right)$;
- Hybrid-Positional Residue Number System (HPR) Uses $P=B_{1}^{n}-\beta$ to reduce complexity to $\mathcal{O}\left(\log _{2}^{3 / 2} P\right)$.
- Does not work for standardised primes

Table of Contents

Motivation
 Elliptic Curve Cryptography Residue Number System

Background
Montgomery Reduction
Hybrid-Positional Residue Number System
Proposed HyPoRes

Experimental Results

Protection against SCAs
Conclusion

Montgomery Reduction

Complexity dominated by $\mathcal{O}\left(h_{1} h_{2}\right)$ with $h_{1} \sim h_{2} \sim \log _{2} P$

Hybrid-Positional Residue Number System

- $D=A \times C=$

$$
D^{(0)}+D^{(1)} B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}+D^{(n)} B_{1}^{n}+\ldots+D^{(2 n-2)} B_{1}^{2 n-2}
$$

Hybrid-Positional Residue Number System

- $D=A \times C=$

$$
D^{(0)}+D^{(1)} B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}+D^{(n)} B_{1}^{n}+\ldots+D^{(2 n-2)} B_{1}^{2 n-2}
$$

- For $P=B_{1}^{n}-\beta$:
$D \equiv\left(D^{(0)}+\beta D^{(n)}\right)+\left(D^{(1)}+\beta D^{(n+1)}\right) B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}$

Hybrid-Positional Residue Number System

- $D=A \times C=$

$$
D^{(0)}+D^{(1)} B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}+D^{(n)} B_{1}^{n}+\ldots+D^{(2 n-2)} B_{1}^{2 n-2}
$$

- For $P=B_{1}^{n}-\beta$:
$D \equiv\left(D^{(0)}+\beta D^{(n)}\right)+\left(D^{(1)}+\beta D^{(n+1)}\right) B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}$
- Perform carry propagation to reduce the digits magnitude

Carry Propagation

Complexity dominated by $\mathcal{O}\left(n^{2}\left(h_{1}+h_{2}\right)+n h_{1} h_{2}\right)$ with

$$
n h_{1} \sim n h_{2} \sim \log _{2} P
$$

Table of Contents

Motivation

Ellintic Curve Cryptography
Residue Number System

Background

Montgomery Reduction
Hybrid-Positional Residue Number System
Proposed HyPoRes
Experimental Results
Protection against SCAs
Conclusion

Hybrid Polynomial-Residue Number System

Hybrid Polynomial-Residue Number System

γ is the n -th root of a

$$
\Rightarrow X^{n}-\beta \cong 0
$$

Hybrid Polynomial-Residue Number System

$$
\left.\begin{array}{l}
\gamma \text { is the } n \text {-th root of a } \\
\text { small value } \beta \text { over } \mathbb{F}_{P}
\end{array}\right\} \Rightarrow X^{n}-\beta \cong 0
$$

- $D=A \times C=$

$$
D^{(0)}+D^{(1)} X+\ldots+D^{(n-1)} X^{n-1}+D^{(n)} X^{n}+\ldots+D^{(2 n-2)} X^{2 n-2}
$$

Hybrid Polynomial-Residue Number System

γ is the n -th root of a small value β over \mathbb{F}_{P}

- $D=A \times C=$ $D^{(0)}+D^{(1)} X+\ldots+D^{(n-1)} X^{n-1}+D^{(n)} X^{n}+\ldots+D^{(2 n-2)} X^{2 n-2}$
- $D \equiv D-\left(D^{(n)}+\ldots+D^{(2 n-2)} X^{n-2}\right) \times\left(X^{n}-\beta\right) \equiv$ $\left(D^{(0)}+\beta D^{(n)}\right)+\left(D^{(1)}+\beta D^{(n+1)}\right) B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}$

Hybrid Polynomial-Residue Number System

γ is the n -th root of a small value β over \mathbb{F}_{P}
 $$
\Rightarrow X^{n}-\beta \cong 0
$$

- $D=A \times C=$
$D^{(0)}+D^{(1)} X+\ldots+D^{(n-1)} X^{n-1}+D^{(n)} X^{n}+\ldots+D^{(2 n-2)} X^{2 n-2}$
- $D \equiv D-\left(D^{(n)}+\ldots+D^{(2 n-2)} X^{n-2}\right) \times\left(X^{n}-\beta\right) \equiv$ $\left(D^{(0)}+\beta D^{(n)}\right)+\left(D^{(1)}+\beta D^{(n+1)}\right) B_{1}+\ldots+D^{(n-1)} B_{1}^{n-1}$
- Perform Montgomery reduction to reduce the digits magnitude

Hybrid Polynomial-Residue Number System

- Lattice $\mathcal{L}(\Gamma)$ of the representations of zero

$$
\Gamma=\left[\begin{array}{cccc}
P & 0 & \ldots & 0 \\
-\gamma & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\gamma^{n} & 0 & \ldots & 1
\end{array}\right]
$$

- Each line in Γ corresponds to either $P=0 \bmod P$ or $-\gamma^{i}+X^{i}$, which when evaluated at $X=\gamma$ produces a value congruent with 0
- Minskowski's theorem guarantees that $\mathcal{L}(\Gamma)$ contains a nonzero vector M of norm at most $(\operatorname{det} \mathcal{L}(\Gamma))^{1 / n}=P^{1 / n}$

Hybrid Polynomial-Residue Number System

A with large digits

\star denotes multiplica-
tion in $\mathbb{Z}[X] /\left(X^{n}-\beta\right)$

Complexity dominated by $\mathcal{O}\left(n^{2}\left(h_{1}+h_{2}\right)+n h_{1} h_{2}\right)$ with $n h_{1} \sim n h_{2} \sim \log _{2} P$

Table of Contents

Motivation

```
Elliptic Curve Cryptography
Residue Number System
```


Background

```
Montgomery Reduction
Hybrid-Positional Residue Number System
Proposed HyPoRes
```


Experimental Results

Protection against SCAs

Conclusion

Experimental Results

Average execution time of a pure-RNS and the proposed approaches for standardised primes, as well as of HPR with specially crafted primes on a i7-3770K

Table of Contents

```
Motivation
    Elliptic Curve Cryptography
    Residue Number System
Background
    Montgomery Reduction
    Hybrid-Positional Residue Number System
Proposed HyPoRes
Experimental Results
```

Protection against SCAs

Protection against SCAs

- Choose γ as the root of $E(X)=E^{(0)}+\ldots+E^{(n-1)} X^{n-1}+X^{n}$
- Operate over $\mathbb{Z}[X] /(E(X))$ instead of $\mathbb{Z}[X] /\left(X^{n}-\beta\right)$
- Choose a E at random at the beginning of point multiplication
- Change representations throughout the execution of the algorithm by precomputing representations of γ^{i} in the target system

Table of Contents

```
Motivation
    Elliptic Curve Cryptography
    Residue Number System
Background
    Montgomery Reduction
    Hybrid-Positional Residue Number System
Proposed HyPoRes
Experimental Results
Protection against SCAs
```

Conclusion

Conclusion

Better Performance

> | Pure- |
| :--- |
| RNS |

er Assumptions
 Weaker Assumptions

- HyPoRes multiplication has subquadratic time complexity
- Montgomery reduction is slower than carry propagation so HyPoRes is slower than HPR, but works for any prime
- Redundant representations are possible, improving resistance against SCAs

Thank you!

Any questions?

