HyPoRes: An Hybrid Representation System for ECC

P. Martins¹ J. Marrez² J.-C. Bajard² L. Sousa¹

¹INESC-ID, Instituto Superior Técnico, Univ. Lisboa ²Sorbonnes Université, CNRS, LIP6, Paris, France

26th IEEE Symposium on Computer Arithmetic

This work was partially supported by Portuguese funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019 and by the Ph.D. grant with reference SFRH/BD/103791/2014; by the ANR grant ARRAND 15-CE39-0002-01; through the Pessoa/Hubert Curien programme with reference 4335 (FCT)/40832XC (CAMPUSFRANCE); and by EU's Horizon 2020 research and innovation programme under grant agreement No. 779391 (FutureTPM).

Motivation Elliptic Curve Cryptography Residue Number System

Background

Montgomery Reduction Hybrid-Positional Residue Number System

Proposed HyPoRes

Experimental Results

Protection against SCAs

Elliptic Curve Cryptography

Point addition of two points over an EC defined in $\ensuremath{\mathbb{R}}$

Security based on the difficulty of computing *n* from [*n*]*P* and *P* for curves defined over a finite field F_P

Residue Number System

RNS breaks arithmetic modulo $B_1 = b_{1,0} \times \ldots \times b_{1,h_1-1}$ down to arithmetic modulo $b_{1,0}, \ldots, b_{1,h_1-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bridging the Gap

- Montgomery Reduction Maps operations in \mathbb{F}_P to \mathbb{Z}_{B_1} for any P with complexity of $\mathcal{O}(\log_2^2 P)$;
- ► Hybrid-Positional Residue Number System (HPR) Uses $P = B_1^n - \beta$ to reduce complexity to $O(\log_2^{3/2} P)$.

Bridging the Gap

- ► Montgomery Reduction Maps operations in F_P to Z_{B1} for any P with complexity of O(log²₂ P);
- Hybrid-Positional Residue Number System (HPR) Uses P = B₁ⁿ - β to reduce complexity to O(log₂^{3/2} P).
 Does not work for

standardised primes

Motivation Elliptic Curve Cryptography Residue Number System

Background Montgomery Reduction Hybrid-Positional Residue Number System

Proposed HyPoRes

Experimental Results

Protection against SCAs

Montgomery Reduction

Complexity dominated by $\mathcal{O}(h_1h_2)$ with $h_1 \sim h_2 \sim \log_2 P$

Hybrid-Positional Residue Number System

$$D = A \times C = D^{(0)} + D^{(1)}B_1 + \ldots + D^{(n-1)}B_1^{n-1} + D^{(n)}B_1^n + \ldots + D^{(2n-2)}B_1^{2n-2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Hybrid-Positional Residue Number System

$$D = A \times C = D^{(0)} + D^{(1)}B_1 + \dots + D^{(n-1)}B_1^{n-1} + D^{(n)}B_1^n + \dots + D^{(2n-2)}B_1^{2n-2}$$

For $P = B_1^n - \beta$:
 $D \equiv (D^{(0)} + \beta D^{(n)}) + (D^{(1)} + \beta D^{(n+1)})B_1 + \dots + D^{(n-1)}B_1^{n-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Hybrid-Positional Residue Number System

- $D = A \times C =$ $D^{(0)} + D^{(1)}B_1 + \ldots + D^{(n-1)}B_1^{n-1} + D^{(n)}B_1^n + \ldots + D^{(2n-2)}B_1^{2n-2}$ • For $P = B_1^n - \beta$:
- $D \equiv \left(D^{(0)} + \beta D^{(n)}\right) + \left(D^{(1)} + \beta D^{(n+1)}\right) B_1 + \ldots + D^{(n-1)} B_1^{n-1}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Perform carry propagation to reduce the digits magnitude

Carry Propagation

・ロト ・ 西ト ・ ヨト ・ 日下 ・ 今々ぐ

Motivation

Elliptic Curve Cryptography Residue Number System

Background Montgomery Reduction Hybrid-Positional Residue Number System

Proposed HyPoRes

Experimental Results

Protection against SCAs

 $\begin{array}{c} \gamma \text{ is the n-}th \text{ root of a} \\ \text{small value } \beta \text{ over } \mathbb{F}_P \end{array} \Rightarrow X^n - \beta \cong 0$

 γ is the n-*th* root of a small value β over \mathbb{F}_P

$$\Rightarrow X^n - \beta \cong 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$D = A \times C = D^{(0)} + D^{(1)}X + \dots + D^{(n-1)}X^{n-1} + D^{(n)}X^n + \dots + D^{(2n-2)}X^{2n-2}$$

 γ is the n-*th* root of a small value β over \mathbb{F}_P

$$\Rightarrow X^n - \beta \cong 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$D = A \times C = D^{(0)} + D^{(1)}X + \dots + D^{(n-1)}X^{n-1} + D^{(n)}X^n + \dots + D^{(2n-2)}X^{2n-2}$$

$$D \equiv D - (D^{(n)} + \dots + D^{(2n-2)}X^{n-2}) \times (X^n - \beta) \equiv (D^{(0)} + \beta D^{(n)}) + (D^{(1)} + \beta D^{(n+1)}) B_1 + \dots + D^{(n-1)}B_1^{n-1}$$

 γ is the n-*th* root of a small value β over \mathbb{F}_P

$$\Rightarrow X^n - \beta \cong 0$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$D = A \times C = D^{(0)} + D^{(1)}X + \dots + D^{(n-1)}X^{n-1} + D^{(n)}X^n + \dots + D^{(2n-2)}X^{2n-2}$$

$$D \equiv D - (D^{(n)} + \dots + D^{(2n-2)}X^{n-2}) \times (X^n - \beta) \equiv (D^{(0)} + \beta D^{(n)}) + (D^{(1)} + \beta D^{(n+1)}) B_1 + \dots + D^{(n-1)}B_1^{n-1}$$

Perform Montgomery reduction to reduce the digits magnitude

• Lattice $\mathcal{L}(\Gamma)$ of the representations of zero

$$\Gamma = \begin{bmatrix} P & 0 & \dots & 0 \\ -\gamma & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\gamma^n & 0 & \dots & 1 \end{bmatrix}$$

Each line in Γ corresponds to either P = 0 mod P or -γⁱ + Xⁱ, which when evaluated at X = γ produces a value congruent with 0

Minskowski's theorem guarantees that L(Γ) contains a nonzero vector M of norm at most (detL(Γ))^{1/n} = P^{1/n}

Motivation

Elliptic Curve Cryptography Residue Number System

Background Montgomery Reduction Hybrid-Positional Residue Number System

Proposed HyPoRes

Experimental Results

Protection against SCAs

Experimental Results

Average execution time of a pure-RNS and the proposed approaches for standardised primes, as well as of HPR with specially crafted primes on a i7-3770K

Motivation

Elliptic Curve Cryptography Residue Number System

Background Montgomery Reduction Hybrid-Positional Residue Number System

Proposed HyPoRes

Experimental Results

Protection against SCAs

Protection against SCAs

• Choose γ as the root of $E(X) = E^{(0)} + \ldots + E^{(n-1)}X^{n-1} + X^n$

• Operate over $\mathbb{Z}[X]/(E(X))$ instead of $\mathbb{Z}[X]/(X^n - \beta)$

Choose a E at random at the beginning of point multiplication

Change representations throughout the execution of the algorithm by precomputing representations of γⁱ in the target system

Motivation

Elliptic Curve Cryptography Residue Number System

Background Montgomery Reduction Hybrid-Positional Residue Number System

Proposed HyPoRes

Experimental Results

Protection against SCAs

- HyPoRes multiplication has subquadratic time complexity
- Montgomery reduction is slower than carry propagation so HyPoRes is slower than HPR, but works for any prime
- Redundant representations are possible, improving resistance against SCAs

Thank you! Any questions?