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Elliptic Curve Cryptography

Point addition of two points over an EC defined in R

I Security based on the difficulty of computing n from [n]P and
P for curves defined over a finite field FP



Residue Number System

ZB1

Zb1,0 Zb1,1
. . . Zb1,h1−1

RNS breaks arithmetic modulo B1 = b1,0 × . . .× b1,h1−1 down to
arithmetic modulo b1,0, . . . , b1,h1−1



Bridging the Gap

ECC Operations

FP

P 6= B1

ZB1

RNS parallel arithmetic

I Montgomery Reduction
Maps operations in FP to
ZB1 for any P with
complexity of O(log2

2 P);
I Hybrid-Positional Residue

Number System (HPR)
Uses P = Bn

1 − β to reduce
complexity to O(log

3/2
2 P).

I Does not work for
standardised primes
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Montgomery Reduction

Q1 s.t. B1|A + Q1P
Q1 = −AP−1 mod B1

Q2 = Q1 mod B2

Z2 = A+Q1P
B1

smallZ1 = Z2 mod B1

A ∼ P2

O(h1h2)

O(h1h2)

Complexity dominated by O(h1h2) with h1 ∼ h2 ∼ log2 P



Hybrid-Positional Residue Number System

A(0) + A(1) B1 + . . . + A(n−1) Bn−1
1

ZB1 × ZB2

I D = A× C =
D(0)+D(1)B1+. . .+D(n−1)Bn−1

1 +D(n)Bn
1 +. . .+D(2n−2)B2n−2

1

I For P = Bn
1 − β:

D ≡
(
D(0) + βD(n)

)
+
(
D(1) + βD(n+1))B1+. . .+D(n−1)Bn−1

1
I Perform carry propagation to reduce the digits magnitude
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Carry Propagation

D
(i)
1 mod B1 D

(i)
1 mod B2

C
(i)
2 =

D
(i)
2 −D

(i)
1

B1
C

(i)
1 = C

(i)
2 mod B1

D
(i)
2 = D

(i)
1

D
(i+1)
2 = D

(i+1)
2 + C

(i)
2D

(i+1)
1 = D

(i+1)
1 + C

(i)
1

O(h1h2)

O(h1h2)

Complexity dominated by O(n2(h1 + h2) + nh1h2) with
nh1 ∼ nh2 ∼ log2 P
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Hybrid Polynomial-Residue Number System

A(0) + A(1) X + . . . + A(n−1) X n−1

ZB1 × ZB2

a =
∑

i=0 A
(i)γ i mod P

γ is the n-th root of a
small value β over FP

⇒ X n − β ∼= 0
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Hybrid Polynomial-Residue Number System

I Lattice L(Γ) of the representations of zero

Γ =


P 0 . . . 0
−γ 1 . . . 0
...

...
. . .

...
−γn 0 . . . 1


I Each line in Γ corresponds to either P = 0 mod P or
−γ i + X i , which when evaluated at X = γ produces a value
congruent with 0

I Minskowski’s theorem guarantees that L(Γ) contains a
nonzero vector M of norm at most (detL(Γ))1/n = P1/n



Hybrid Polynomial-Residue Number System

Q1 s.t. B1|A + Q1 ?M
Q1 = −A ?M−1 mod B1

Q2 = Q1 mod B2

Z2 = A+Q1?M
B1

smallZ1 = Z2 mod B1

A with large digits

O(nh1h2)

O(nh1h2)

? denotes multiplica-
tion in Z[X ]/(X n − β)

Complexity dominated by O(n2(h1 + h2) + nh1h2) with
nh1 ∼ nh2 ∼ log2 P
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Experimental Results
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Pure-RNS HyPoRes HPR

Average execution time of a pure-RNS and the proposed approaches for
standardised primes, as well as of HPR with specially crafted primes on a
i7-3770K
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Protection against SCAs

I Choose γ as the root of E (X ) = E (0) + . . .+E (n−1)X n−1 +X n

I Operate over Z[X ]/(E (X )) instead of Z[X ]/(X n − β)

I Choose a E at random at the beginning of point multiplication

I Change representations throughout the execution of the
algorithm by precomputing representations of γ i in the target
system
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Conclusion

Better Performance

Pure-
RNS

HyPoRes HPR

Weaker Assumptions

I HyPoRes multiplication has subquadratic time complexity
I Montgomery reduction is slower than carry propagation so

HyPoRes is slower than HPR, but works for any prime
I Redundant representations are possible, improving resistance

against SCAs



Thank you!
Any questions?
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