
Order/Radix Problem: Towards Low End-to-End
Latency Interconnection Networks

Ryota Yasudo∗, Michihiro Koibuchi†, Koji Nakano‡, Hiroki Matsutani∗, Hideharu Amano∗

∗Keio University
Hiyoshi 3–14–1, Kohoku-ku,
Yokohama, JAPAN 223–8522

yasudo@am.ics.keio.ac.jp

†National Institute of Informatics
Hitotsubashi 2–1–2, Chiyoda-ku,

Tokyo, JAPAN 101–8430
koibuchi@nii.ac.jp

‡Hiroshima University
Kagamiyama 1–4–1, Higashihiroshima-shi,

Hiroshima, JAPAN 739–8527
nakano@cs.hiroshima-u.ac.jp

Abstract—We introduce a novel graph called a host-switch
graph, which consists of host vertices and switch vertices. Using
host-switch graphs, we formulate a graph problem called an
order/radix problem (ORP) for designing low end-to-end latency
interconnection networks. Our focus is on reducing the host-to-
host average shortest path length (h-ASPL), since the shortest
path length between hosts in a host-switch graph corresponds
to the end-to-end latency of a network. We hence define ORP
as follows: given order (the number of hosts) and radix (the
number of ports per switch), find a host-switch graph with the
minimum h-ASPL. We demonstrate that the optimal number
of switches can mathematically be predicted. On the basis of
the prediction, we carry out a randomized algorithm to find a
host-switch graph with the minimum h-ASPL. Interestingly, our
solutions include a host-switch graph such that switches have
the different number of hosts. We then apply host-switch graphs
to interconnection networks and evaluate them practically. As
compared with the three conventional interconnection networks
(the torus, the dragonfly, and the fat-tree), we demonstrate that
our networks provide higher performance while the number of
switches can decrease.

Index Terms—Network topology, interconnection network,
graph theory, average shortest path length, optimization.

1. INTRODUCTION

Graph theory is not merely mathematical study; it is useful
for designing networks. In the design of networks for computer
systems such as telecommunications and multiprocessors,
there are certain requirements and limitations. In particular,
requirements include the number of nodes, and limitations in-
clude the degrees and the diameter. Hence the three parameters
above have been studied in graph theory. A classical problem
for such studies is the degree/diameter problem (DDP). DDP
is the problem of finding the largest number of vertices in a
graph of given maximum degree ∆ and diameter D. The known
upper bound—called the Moore bound [1]—on the number of
vertices of an undirected graph is 1+∆∑D−1

i=0 (∆−1)i. Near-
optimal/optimal solutions of DDP are applied to topologies of
interconnection networks [2], [3].

However, DDP solutions may not directly usable for build-
ing network topologies in supercomputers and high-end data
centers for two reasons. First, DDP requires the specific
number of vertices and the degree, and hence we cannot meet
the technical requirement such as the number of nodes and the

number of links. To cover this shortcoming, we can consider
the order/degree problem (ODP) instead of DDP. Although
less attention is given to ODP as compared with DDP, ODP is
recently studied by designers of interconnection networks [4].
For ODP, we can obtain the lower bound on the diameter as
with the Moore bound of DDP.

Second, in conventional graph theory, one kind of vertex
is considered on a graph, though two types of nodes—hosts
(end points) and switches—exist in typical interconnection
networks. Hence the mapping between vertices and physical
nodes is not obvious; if we regard vertices as switches, we
have no information for hosts. Because the mapping strongly
affects the network performance (we show this in Section 5),
this is a serious issue. This shortcoming cannot be covered
even though we tackle ODP; we should radically change both
a model of interconnection networks and a graph problem.

We therefore introduce a novel graph called a host-switch
graph and formulate a graph problem called an order/radix
problem for designing low end-to-end latency interconnec-
tion networks. A host-switch graph consists of two types of
vertices, hosts and switches. Our focus is on reducing the
host-to-host average shortest path length (h-ASPL), since the
shortest path length between hosts in the host-switch graph
corresponds to the end-to-end latency of an interconnection
network. The main technical requirement is the number of
hosts and the number of ports per switch, and thus they
become constraint conditions. Note that, most importantly, the
number of switches is unlimited. One might think the more
switches provide the lower h-ASPL, but it is not always true.
We show the optimal number of switches can be predicted
from the Moore bound in Section 5.

The rest of the paper is organized as follows. In Section 2 we
describe related work. In Section 3 we define the host-switch
graph and the order/radix problem. In Section 4 we provide the
lower bound on the diameter and the h-ASPL of host-switch
graphs. In Section 5 we present a randomized algorithm to
find host-switch graphs with the low h-ASPL, and discuss the
optimal number of switches. In Section 6 we compare the
topologies given by our algorithm with conventional topolo-
gies used in supercomputers listed in Top500 [5]. Finally, in
Section 7, we conclude the paper.

2. RELATED WORK

2. 1 Graphs Inspired by Complex Networks

In the field of network science, researchers find that complex
networks such as social networks provide the low diameter
and ASPL. Thus, some models are proposed, e.g, a cycle
plus a random matching [6], the Erdős-Rényi model (purely
random graph) [7], and the Watts-Strogatz model (so-called
small-world networks) [8]. Random graphs have not only low
diameter/ASPL but also high bisection width [9], which is also
important for interconnection networks. Random/small-world
graphs are hence applied for computer systems, including
high-performance computing (HPC) systems [10], data cen-
ters [11], and on-chip networks [12]. To apply such complex
topologies to practical networks, physical layouts [13] and
routing algorithms [14] are also studied. However, latest stud-
ies [15]–[17] demonstrate that local search algorithms enable
us to construct better (i.e., closer to the optimal) graphs than
naive random topologies. This paper follows these studies,
but establishes different network models and optimization
problems that consider both hosts and switches.

Researchers on network science also find that the degree-
distributions of real-world networks tend to follow a power
law. Networks follow this property are called scale-free net-
works. The ASPL of scale-free networks is ultrasmall [18],
that is, the ASPL is O(ln lnN) while the ASPL of small-world
networks is O(lnN), where N denotes the number of vertices.
Gyarmati et al. apply scale-free networks to data center
networks [19]. When we apply scale-free networks, however,
we must carefully evaluate the cost of various switches with
different number of ports. In interconnection networks, tech-
nical requirements include the number of switches, and hence
scale-free networks would not be appropriate for practical
interconnection networks.

2. 2 Topology of Interconnection Networks

The study on topologies of interconnection networks for
parallel computer systems has a long history. In the 1970s,
hypercubes were used in many systems such as Cosmic
Cube [20]; in the 1980s, 2-D/3-D tori and meshes became a
main stream due to short cables that provide high bandwidth
and cost-efficiency; from the 1990s to 2000s, as the number of
nodes becomes over 10 thousand, high-radix networks such as
the dragonfly [21] are researched for reducing communication
overhead; and now, in the 2010s, the high-radix intercon-
nection networks are used in commercial high-performance
computers [22], [23].

All of the networks above are direct networks, which mean
networks such that a given number of hosts are connected to
each switch. In addition to direct networks, indirect networks
are also used, which mean networks such that some switches
are connected with a given number of hosts while the other
switches are connected with no hosts. Above all, the fat-
tree [24] is widely used in parallel computer systems from gen-
eration to generation though technology for each generation is
different (e.g., both CM-5 [25] in the 1980s and Tianhe-2 [26]

h0 h1 h2 h3 h4 h5

h7 h8 h9 h10 h11 h12 h13 h14 h15

s0 s1 s2 s3

h6

Fig. 1. An example of a host-switch graph (n = 16,m = 4,r = 6). A circle
and a rectangle represent a host and a switch, respectively.

in the 2010s use the fat-tree). In this respect, indirect networks
contrast with direct networks. For this reason, the question of
our interest is how we should uniformly discuss direct and
indirect networks. Host-switch graphs enable us to answer this
question. Moreover, host-switch graphs include new type of
networks such that the number of connected hosts is different
according to the switch, which correspond to neither direct nor
indirect networks. Interestingly, the graph generated by our
method is such a graph. We compare the network given by
our graph and conventional network topologies in Section 6.

3. MODEL AND OPTIMIZATION PROBLEM

3. 1 A Host-Switch Graph

A host-switch graph is a 3-tuple G = (H,S,E) with integer
parameters n ≥ 3, m ≥ 1, and r ≥ 3 where

• H = {h0,h1, ...,hn−1} is a set of n elements called host
vertices (or simply hosts),

• S = {s0,s1, ...,sm−1} is a set of m elements called switch
vertices (or simply switches), and

• E = {{si,s j} | si,s j ∈ S}
⋃
{{hi,s j} | (hi ∈ H)∧ (s j ∈ S)}

is a set of elements called edges.
The number n of hosts is called the order of G. Each host
must be connected with exactly one edge while each switch
is connected with not greater than r edges. The number r
of ports per switch is called the radix of G. For simplicity,
we assume that the host-switch graphs dealt in this paper are
connected and have no redundant switches. In other words,
there exists a path along edges between any pair of two hosts,
and any switches is on at least one of such paths. In Fig. 1
we illustrate an example of a host-switch graph. Throughout
this paper, as with Fig. 1, a circle and a rectangle represent a
host and a switch, respectively.

We can regard a host-switch graph as the undirected graph
G = (V,E) extended by partitioning V into H and S, and
redefining elements of E. Thereby, we can think that a host-
switch graph represents interconnection networks with m r-
port switches, n 1-port host computers, and communication
links connecting a pair of two switches or a pair of one host
and one switch. In this sense, we shall regard a host-switch
graph as a theoretical model of interconnection networks.
Note that we cannot distinguish between hosts and switches

when we use an ordinary undirected graph as a model of
interconnection networks.

3. 2 Order/Radix Problem
For any two vertices x,y ∈ H

⋃
S, let ℓ(x,y) denote the

number of edges of the shortest path between x and y. Let
D(G) and A(G) be the diameter and the host-to-host average
shortest path length (h-ASPL) of a host-switch graph G,
respectively. For example, ℓ(h0,h15) of a host-switch graph
shown in Fig. 1 is 3, because the shortest path between them
is (h0,s0,s3,h15). By using ℓ(x,y), we formally define the
diameter and the h-ASPL as follows:

D(G) := max{ℓ(hi,h j) | 0 ≤ i < j < n},

A(G) := ∑
0≤i< j<n

ℓ(hi,h j)/

(
n
2

)
.

The h-ASPL is essentially different from the average shortest
path length (ASPL) of an undirected graph in that the consid-
ered path is between hosts rather than switches.

Our goal is to find a host-switch graph with the minimum h-
ASPL in all host-switch graphs that connect n hosts with any
number of r-port switches, because the h-ASPL determines
the ideal all-to-all communication latency of interconnection
networks. The diameter is also important because it determines
the maximum latency; however, it is not so critical as the h-
ASPL, and hence the problem focuses on minimizing the h-
ASPL. Our proposed optimization problem is defined as fol-
lows: given order n and radix r, find a host-switch graph with
the minimum h-ASPL. We name this problem, an order/radix
problem (ORP). The distinguishing characteristic of ORP is
that the number of switches is variable, and hence we have a
wide design space and should explore the preferred number
of switches. Now, let us discuss it briefly.

If n ≤ r, then all the hosts can be connected with a switch.
In this case, the h-ASPL clearly takes the minimum value for
given n and r. If r < n ≤ m(r−m+1), then all the switches
can constitute a m-vertex clique. Also in this case, the h-ASPL
takes the minimum value for given n and r. It is non-trivial, but
we can prove it (see Appendix). If m(r−m+1)< n, however,
there exist no trivial constructions of the host-switch graph
with the minimum h-ASPL for given n and r. Because n ≫ r
holds in the design of practical interconnection networks, it is
difficult to construct a host-switch graph with the minimum
h-ASPL.

4. LOWER BOUNDS ON THE DIAMETER AND H-ASPL OF
HOST-SWITCH GRAPHS

First, we provide the lower bound on the diameter.

Theorem 1 (Lower bound on the diameter) For any host-
switch graph G = (H,S,E) with fixed parameters n and r, the
diameter is not less than ⌈logr−1(n−1)⌉+1.

Proof: Consider any fixed host hs ∈ H. The host hs
reaches exactly one switch along one edge, and hence hs can
reach at most r−1 hosts along two edges. In general, hs can

reach at most (r− 1)i−1 hosts along i edges. Thus, we have
n−1 ≤ (r−1)D(G)−1. Solving the inequality above for D(G),
we obtain D(G)≥ ⌈logr−1(n−1)⌉+1.

Next, we provide the lower bound on the h-ASPL of a host-
switch graph G = (H,S,E) with fixed parameters n and r.
Let Ahs(G) and Dhs(G) denote a single-source h-ASPL from
hs ∈ H and a single-source diameter from hs, respectively. The
lower bound on Ahs(G) is trivially the lower bound on A(G).
For any source host hs, we can partition all the hosts in H
into subsets H0,H1, ... such that Hi = {hd ∈ H | ℓ(hs,hd) = i}.
Similarly, we can partition all the switches in S into subsets
S1,S2, ... such that Si = {sd ∈ S | ℓ(hs,sd) = i}. Any host-
switch graph with a source host hs clearly satisfies H0 = {hs},
HDhs (G) ̸= /0, and SDs(G,hs)−1 ̸= /0. Thus, we have:

Lemma 1 For any host-switch graph G with a source host hs
and a switch sa ∈ SDhs (G)−1 connected with exactly one host,
there exists a host-switch graph G′ with a source host hs such
that Ahs(G

′)< Ahs(G).

Proof: Let G be host-switch graph with a source host hs
and a switch sa ∈ SDhs (G)−1 connected with exactly one host
ha. By converting sa to ha in G, we can construct a host-switch
graph G′ such that Ahs(G

′) = Ahs(G)− 1
n−1 < Ahs(G).

Let a balanced host-switch graph G with a source
host hs denote the host-switch graph such that H \ H0 =
HDhs (G)

⋃
HDhs (G)−1 holds. A host-switch graph is said to be

imbalanced if it is not a balanced host-switch graph. Using
these notations, we obtain the following lemma:

Lemma 2 Any host-switch graph G with a source host hs such
that Ahs(G) ≤ Ahs(G

′) for any host-switch graph G′ with a
source host hs is a balanced host-switch graph.

Proof: Suppose that there exists an imbalanced host-
switch graph G with a source host hs such that Ahs(G) ≤
Ahs(G

′) for any host-switch graph G′ with a source host
hs. From Lemma 1, we can assume there exists a switch
sa ∈ SDhs (G)−1 connected with at least two hosts ha and hb,
without loss of generality. Since G is an imbalanced host-
switch graph, there exists hc ∈ HDhs (G)−ε(2 ≤ ε < Dhs(G)).
We can convert hc to a switch sb ∈ SDhs (G)−ε connected with
h′c ∈ HDhs (G)−ε+1. If r > 3, then we can construct G′ such
that Ahs(G

′) = Ahs(G)− 2(ε−1)−1
n−1 < Ahs(G) by reconnecting

ha and hb with sb. If r = 3, then we can reconnect only one
host ha with sb. Here, sa is connected with only a switch
in SDhs (G)−2 and hc. Hence, we can construct G′ such that
Ahs(G

′) = Ahs(G)− ε−1
n−1 < Ahs(G) by replacing sa to hc, a

contradiction.
From Lemma 2, we can compute the lower bound on the

h-ASPL as follows:

Theorem 2 (Lower bound on the h-ASPL) For any host-
switch graph G = (H,S,E) with fixed parameters n and r, the
h-ASPL is not less than{

D− if n = (r−1)D−−1 +1,
D−−α/(n−1) otherwise,

where D− = ⌈logr−1(n− 1)⌉+ 1 is the lower bound on the di-
ameter of G, and α =(r−1)D−−2−⌈(n−1−(r−1)D−−2)/(r−
2)⌉).

Proof: Let G be a host-switch graph with a source host hs.
These are two cases: n = (r−1)D−−1+1 or n ̸= (r−1)D−−1+
1.
Case 1: n = (r−1)D−−1 +1
In this case |H \H0| = (r− 1)D−−1 holds. From Lemma 2, a
host-switch graph with the minimum Ahs(G) satisfies H \H0 =
HD− . Consequently Ahs(G) is equal to D−.
Case 2: n ̸= (r−1)D−−1 +1
In this case |H \H0| < (r − 1)D−−1 holds. From Lemma 2,
a host-switch graph with the minimum Ahs(G) satisfies H \
H0 = HD−

⋃
HD−−1. Consequently Ahs(G) is equal to D− −

|HD−−1|/(n−1).
To solve for the value of |HD−−1|, consider a host-

switch graph G′ = (H ′,S′,E ′) such that H ′ \H ′
0 = H ′

D−−1 and
|H ′

D−−1| = (r− 1)D−−2. Let us convert G′ to G. To this end,
we should convert ⌈(n − 1 − (r − 1)D−−2)/(r − 2)⌉ hosts to
switches, because we must connect additional n− (r−1)D−−2

hosts and the number of connectable hosts increases by (r−2)
if we convert a hosts to a switch. Consequently |HD−−1| is
equal to (r−1)D−−2 −⌈(n−1− (r−1)D−−2)/(r−2)⌉). This
value is equal to α of the given statement.

5. RANDOMIZED ALGORITHM FOR ORDER/RADIX
PROBLEM

In this section we present a randomized algorithm to find a
host-switch graph with the low h-ASPL and then discuss the
results.

5. 1 Swap Operation: Local Search Restricted to Regular
Host-Switch Graphs

We shall begin with a simple algorithm that can be applied
only for a host-switch graph such that any switch in S has
the fixed number k of neighbor switches and p − k hosts,
respectively. We call such a host-switch graph a k-regular
host-switch graph (or simply regular host-switch graph). We
can convert a k-regular host-switch graph G = (H,S,E) to k-
regular graph G′ = (V,E ′) by removing all the host-switch
edges and letting S →V . In general, let G′ denote G converted
as stated above, and then the diameter and the h-ASPL of a
k-regular host-switch graph G are easily obtained from these
of G′.

Let us consider a k-regular host-switch graph G. We can
calculate A(G) by using A(G′), as follows:

A(G) =
(n/m)2(m

2
)
(A(G′)+2)+2

(n/m
2
)
m(n

2
)

=
A(G′)(mn−n)

mn−m
+2. (1)

Similarly, the lower bound on the h-ASPL of the k-regular
host-switch graph with fixed parameter n, m, and r can be
found by using the Moore bound [1], the known lower bound

sa sc

sdsb

sa sc

sdsb

Fig. 2. Swap operation.

sa

scsb

sa

scsb

Fig. 3. Swing operation denoted as swing(sa,sb,sc).

on the ASPL of a K-regular graph with N vertices. Using the
Moore bound, say M(N,K), we can calculate A(G) as follows.

A(G)≥ M(m, p−n/m)(mn−n)
mn−m

+2. (2)

From the above, we can use a randomized algorithm similar
to prior research that searches an undirected regular graph with
a low ASPL [15]–[17]. As with the previous work, we can use
a local search algorithm where a neighbor solution is given by
the swap operation (Fig. 2), which converts {sa,sb},{sc,sd}∈
E to {sa,sd},{sb,sc}. We adopt simulated annealing (SA) to
escape from a local solution.

5. 2 Swing Operation: Local Search for Any Host-Switch
Graph

We extend the algorithm above so that it can change
endpoints of host-switch edges as well as those of switch-
switch edges. The extended algorithm is based on a new op-
eration called a swing operation (Fig. 3). The swing operation
converts {sa,sb},{sc,hi} ∈ E to {sa,sc},{sb,hi}, and hence it
can change host-switch edges. In other words, this operation
increments kb and decrements kc. Let swing(sa,sb,sc) denote
the swing operation.

As stated above, the swap operation never changes host-
switch edges, and contrariwise the swing operation always
changes host-switch edges. Thus we should combine them to
obtain good solutions. To this end, we introduce a 2-neighbor
swing operation (Fig. 4). For simplicity, hosts are omitted in
the figure. This operation has the following four steps:
Step 1: Operate swing(sa,sb,sc) and evaluate the solution,
called the 1-neighbor solution.
Step 2: If the 1-neighbor solution is accepted, then move to
the 1-neighbor solution and the operation ends. Otherwise, go
to the next step.
Step 3: Operate swing(sd ,sc,sb) and evaluate the solution,
called the 2-neighbor solution.

sa

sb

sc

sd

sa

sb

sc

sd

sa

sb

sc

sd

initial solution 1-neighbor solution 2-neighbor solution

Fig. 4. 2-neighbor swing operation (hosts are omitted).

Step 4: If the 2-neighbor solution is accepted, then move to
the 2-neighbor solution. Otherwise, the initial solution holds.
Consequently, this operation contains both of the swap oper-
ation (if the 2-neighbor solution is accepted) and the swing
operation (if the 1-neighbor solution is accepted).

5. 3 Discussion about Optimal Number of Switches

We carry out SAs with the swap operation and the 2-
neighbor swing operation, and compare their results with the
lower bound given by Theorem 2 and the Moore bound. We
obtain the results for n = 128,256,512,1024 and r = 12,24,
and show typical results among them in Fig. 5. Here, the
Moore bound is calculated by Formula 2; however, n/m must
be an integer, and thus the Moore bound of a host-switch graph
has a value for specific pairs of n, m, and r. We hence extend
the Moore bound so that the degree can be a rational number,
not only an integer. We call it the continuous Moore bound.
In Fig. 7 we show the difference between the Moore bound
and the continuous Moore bound in the case of n = 1024 and
r = 24.

Only in the case of n= 128 and r = 24 (Fig. 6a), the h-ASPL
can be less than 3. This is because the switches can constitute
a clique only in this case, as described in Section 3. 2. That
is, m ≤ n ≤ m(r−m+1) holds when m = 8. When m ≈ 8, the
optimized host-switch graph is similar to a host-switch graph
such that the switches constitute a clique to obtain the low h-
ASPL. In the cases of other pairs of n and r, n ≫ m(r−m+1)
holds for any m, and consequently the h-ASPLs exceed 3.

In Fig. 5, a dotted line shows m such that the continuous
Moore bound takes the minimum number. The important thing
is that this value of m accords the value of m such that the h-
ASPL of the optimized host-switch graph takes the minimum
value in all the cases. Let mopt and Aopt denote this value of
m and the h-ASPL when m = mopt. In Fig. 6 we show the
distribution of the number of connected hosts of a switch,
which we call the host distribution. Interestingly, the obtained
graph includes switches that have different number of hosts.
This corresponds to neither conventional direct nor indirect
networks.

Other phenomenon of interest is that, when m < mopt or
m > mopt, the h-ASPL of a regular host-switch graph signifi-
cantly exceeds Aopt, though that of a non-regular host-switch
graph slightly exceeds Aopt. Let us discuss each case.
Case 1: m > mopt
In this case, a non-regular host-switch graph can include

unused switches that no shortest path between hosts includes.
In the case of (n,m,r) = (1024,1024,24) shown in Fig. 6c,
the host distribution becomes as shown in Fig. 8. The figure
illustrates over 70% switches are connected to no hosts. This
indicates that the network includes otiose switches. A regular
host-switch graph cannot contain such unused switches and
all the switches must be connected with hosts.
Case 2: m < mopt
In this case, only a host-switch graph with small number of
switches can be constructed. Hence, when a host-switch graph
is regular, the degree becomes too small and consequently the
h-ASPL drastically increases. When a host-switch graph is
not regular, however, a tree-like graph in which only a few
switches exist can be constructed. That is why the h-ASPL
can be less than the continuous Moore bound.

From the above, we have the essential observation about the
preferred number of switches: for fixed n and r, we should
construct a host-switch graph with m switches such that the
continuous Moore bound takes the minimum value. Hence we
should carry out the randomized algorithm only with this m.
Accordingly, our proposed topology is generated as follows.
First, for fixed n and r, we set m so that the continuous Moore
bound takes the minimum value. Second, we carry out SA
with the 2-neighbor swing operation. This method contracts
with conventional optimization methods in which the number
of switches is given in advance.

6. COMPARISONS WITH CONVENTIONAL TOPOLOGIES

6. 1 Review of Conventional Topologies
There are many conventional topologies of interest. Among

them, we pick up typical topologies used in supercomputers
listed in Top500 for November 2016: the torus used in
Titan [27] and Sequoia [28], the fat-tree used in Tianhe-2 [26],
and the dragonfly used in Cori [22] and Piz Daint [23]. We
review them as a host-switch graph and compare them with our
proposed host-switch graph. Note that the definitions described
below are specialized for the comparisons, and there are other
variations of each topology.

6. 1. 1 Torus: The torus host-switch graph with integer
parameters dimension, say K, and base, say N, is a host-switch
graph such that all the switches constitute a K-ary N-torus. In
a K-ary N-torus, each node is identified by a K-bit base-N
address, aK−1aK−2...a0, and connected to node with addresses
a′K−1a′K−2...a

′
0 such that a′i ±1 (mod N) = ai and a′j = a j for

0 ≤ i ≤ K −1 and j ̸= i.
From the definition, the number of switches is

m = NK . (3a)

Each switch is connected with 2K other switches and can be
connected with at most r−2K hosts. Thus the number of hosts
and the radix are

n ≤ (r−2K) ·NK , (3b)
r > 2K. (3c)

Note that the number of hosts connected with a switch is
variable because the torus is a direct network.

(a) n = 128,r = 24 (b) n = 256,r = 12 (c) n = 1024,r = 24

Fig. 5. h-ASPL vs. number of switches

(a) n = 128,r = 24 (b) n = 256,r = 12 (c) n = 1024,r = 24

Fig. 6. Host distribution when m = mopt

Fig. 7. Comparison between the Moore bound and the continuous Moore
bound.

Fig. 8. Host distribution of a host-switch graph with unused switches
((n,m,r) = (1024,1024,24)).

6. 1. 2 Dragonfly: The dragonfly, originally proposed
in [21], is a hierarchical network. It can easily be modeled
as a host-switch graph because it contains information of both
switches and hosts. It has four parameters a, h, g, and p,
which represent the numbers of switches in a group, edges
of a switch connected with other groups, the total groups, and
hosts connected with a switch, respectively. According to prior

research [21], these parameters should satisfy a = 2h = 2p to
balance traffic loads, and hence we assume this equation holds.
From the above, the radix is

r = (a−1)+h+ p = 2a−1. (4a)

We assume g = ah+ 1 holds, that is, there is exactly one
edge between each pair of groups and the diameter and h-
ASPL take the minimum values. Consequently the switches in
a group constitute a a-vertex clique, and the groups also con-
stitute a a2/2+1-vertex clique, and the numbers of switches
and hosts are

m = a
(

a2

2
+1

)
=

a3

2
+a, (4b)

n ≤ p ·m =
a4

4
+

a2

2
. (4c)

6. 1. 3 Fat-Tree: There are many variations of fat-trees. In
this paper, we adopt three-layer fat-tree such that the number
of ports of a switch is uniform, which is a special instance
of Clos network called a K-ary fat-tree [29]. The fat-tree can
easily be modeled as a host-switch graph because it is an
indirect network. The value of K corresponds the number of
links per switch, and thus the radix is

r = K. (5a)

A K-ary fat-tree consists of three layers: the core layer with
K2/4 switches, the aggregation layer with K2/2 switches,
and the edge layer with K2/2 switches. Thus, the number of
switches is

m = 5K2/4. (5b)

Each switch in the edge layer is connected with K/2 hosts,
and thus the number of hosts is

n = K3/4. (5c)

6. 2 Experimental Method
We compare the conventional topologies above with pro-

posed topologies in terms of performance, bandwidth, power
consumption, and cost breakdown. Since each conventional
topology must take a specific combination of n, m, and r,
we separately compare it with our proposed topology. The
comparisons include three experiments below.

6. 2. 1 Performance evaluation: We simulate the execu-
tion of parallel applications that use Message Passing In-
terface (MPI) by using SIMGRID discrete event simulator
(v3.15) [30]. The applications we use are NAS parallel bench-
marks (version 3.3.1, MPI versions, Class A for IS and FT,
and Class B for the others) [31]. To run the benchmarks, the
number of processes must be the power of four, and thus
we assume n = 1024 and the network size is set to suit it.
Each host has 100 GFlops in all networks. We configure
SIMGRID to utilize its built-in version of the MVAPICH2
implementation of MPI collective communications.

For each conventional topology, we construct the smallest
host-switch graph such that the number of connectable hosts is
1024 or more, and we sequentially connect hosts to switches
until n becomes 1024. For the proposed topology, we construct
host-switch graph such that n= 1024 and r is the same as each
conventional topology, as described in Section 5. Afterward,
we sequentially connect hosts to switches in depth-first order
by using backtracking.

6. 2. 2 Bandwidth evaluation: We evaluate bandwidth of
networks by using METIS, a set of programs for partitioning
graphs [32]. For each host-switch graph G = (H,S,E), we
partition the vertices in V = H ∪ S into 2-16 disjoint subsets
equally so that the number c of edges such that two end-
points are in different subsets becomes minimum. Here c is
defined as bandwidth. In particular, when we partition a graph
into 2 subgraphs, we obtain bisection bandwidth. In general,
interconnection networks with larger bisection bandwidth are
better because minimum cut determines maximum possible
flows through a network, according to the max-flow min-cut
theorem [33].

6. 2. 3 Power and cost evaluation: To evaluate power
consumption and cost, we design a physical floorplan which
is sufficiently large to align all cabinets on a 2-D grid. We
assume that each cabinet is 60 cm wide and 210 cm deep
including space for the aisle, and calculate the number of
cables and their lengths. If a cable length is over 100 cm, we
use an optical cable. Otherwise, we use an electrical cable.
We subsequently use power and cost models of Mellanox
InfiniBand FDR10 switches and Mellanox InfiniBand FDR10
40Gb/s QSFP cables [2].

6. 3 Results and Discussion
6. 3. 1 Comparison with Torus: We adopt the torus such

that the dimension K is 5, which we call a 5-D torus, as with

(a)

(b) (c)

(d)

Fig. 9. Results of comparisons between 5-D torus and proposed topology: (a)
Performance; (b) Bandwidth; (c) Power consumption; (d) Cost breakdown.

networks of Sequoia. From Formulae 3 we set N and r to 3
and 15, respectively, and consequently n ≤ 1215, m = 243 and
r = 15. Although we can also construct the 5-D torus such that
N = 4 and r = 11, the number of host connected with a switch
is only 1 in this case, and so it is impractical. The proposed
topologies satisfy n = 1024, m = 194, and r = 15, and thus the
number of switches decreases by 20%.

In Fig. 9a we show the results of the performance compari-
son. The proposed topology outperforms the 5-D torus by 22%
on average. It achieves particularly high performance in the
cases of IS (Integer Sort), FT (Fourier Transform), and MG
(Multi-Grid), because they require random memory access,
all-to-all communication, and long-distance communication,
respectively, and thus the low h-ASPL effectively improves
performance.

In Fig. 9b we show the results of the bandwidth comparison.
Compared with the 5-D torus, the proposed topology increases
bisection bandwidth by 31% and provides higher bandwidth
regardless of the number P of partition, except for the case
of P = 14. This indicates that the proposed topology, which

is optimized not for bandwidth, provides high bandwidth, as
with random graphs [9].

In Fig. 9c we show the results of the power comparison. The
proposed topology consumes less power when the number of
connectable hosts is 1215 or less. Since we assume n= 1024 in
the performance evaluation, we can say the proposed topology
provides higher performance with lower power consumption
compared with the 5-D torus. However, the proposed topology
consumes more power when the number of connectable hosts
is more than 1215. This is because we assume the torus
with the fixed dimension and the fixed radix—5 and 15,
respectively—and hence the cost of the torus increases only
slightly as the number of connectable hosts increases. Thus,
the performance of the torus would drastically degrade when
the number of hosts is more than 1215. The proposed topology,
on the other hand, uses more switches to reduce the h-ASPL.

In Fig. 9d we show the results of the cost comparison. They
show a similar tendency as the results of power consumption.
However, when the number of connectable hosts is 1215,
the proposed topology requires more cost than the 5-D torus
on account of cable complexity. In addition, the cable cost
increases by 45%, though the switch cost decreases by 5%.
Because the switch cost is dominant, the total cost increases
only by 3%, which is small as compared with the performance
improvement.

Overall, as compared with the 5-D torus, the proposed
topology provides higher performance and bandwidth with
comparable power consumption and cost when n = 1024. If
the number of hosts becomes more than 1024, the 5-D torus
requires small power consumption and cost, but it is not
scalable in terms of performance.

6. 3. 2 Comparison with Dragonfly: From Formulae 4, we
set a to 8, and consequently n≤ 1056, m= 264 and r = 15. The
proposed topologies satisfy n = 1024, m = 194, and r = 15.
Hence the number of switches decreases by 27%.

In Fig. 10a we show the results of the performance compari-
son. The proposed topology outperforms the dragonfly by 12%
on average. These results, however, illustrate a trend different
from the comparison with the 5-D torus. This is because the
dragonfly provides low diameter, and the performance does
not degrade even when the long-distance traffic occurs. From
these results, we reconfirm that the dragonfly is an efficient
topology with the specific pairs of n, m, and r, but nonetheless
our proposed topology outperforms the dragonfly on average.

In Fig. 10b we show the results of the bandwidth compar-
ison. The results of the proposed topology are the same as
results in Fig. 9b because values of n, m, and r are the same.
Compared with the dragonfly, the proposed topology increases
bisection bandwidth by 24% and provides higher bandwidth
regardless of the number of partition.

In Fig. 10c we show the results of the power comparison.
The power consumption of both topologies are almost propor-
tional to the number of connectable hosts. The radix increases
as the number of connectable hosts increases in the case of
the dragonfly, and hence the number of switches for proposed
topology becomes lower, unlike the case of the 5-D torus.

(a)

(b) (c)

(d)

Fig. 10. Results of comparisons between dragonfly and proposed topology:
(a) Performance; (b) Bandwidth; (c) Power consumption; (d) Cost breakdown.

Thus, compared with the dragonfly, the proposed topology can
reduce the power consumption regardless of the number of
connectable hosts.

In Fig. 10d we show the results of the cost comparison. We
find the cable cost of the dragonfly is low, because the cable
within a group in the dragonfly is short. However, as with the
power consumption, the proposed topology can reduce cost
as compared with the dragonfly regardless of the number of
connectable hosts. Although the cable cost slightly increases
on account of the cable complexity, its reduction rate is smaller
than that of switch cost.

Overall, the proposed topology and the dragonfly have
similar properties, but the proposed topology provides higher
performance, higher bandwidth, lower power consumption,
and lower cost. Furthermore, the proposed topology is more
flexible in the sense that it can be designed for any possible
combination of n, m, and r.

6. 3. 3 Comparison with Fat-Tree: From Formulae 5, we
adopt a 16-ary fat-tree, and consequently n ≤ 1024, m = 320
and r = 16. The proposed topologies satisfy n = 1024, m =

(a)

(b) (c)

(d)

Fig. 11. Results of comparisons between fat-tree and proposed topology: (a)
Performance; (b) Bandwidth; (c) Power consumption; (d) Cost breakdown.

183, and r = 16. Hence the number of switches decreases by
43%.

In Fig. 11a we show the results of the performance compar-
ison (due to computational complexity, simulations for IS and
FT are omitted). The proposed topology outperforms the fat-
tree by 84% on average. As with the torus, the fat-tree degrades
performance especially in MG, memory intensive application
that requires long-distance communication. Furthermore, in
the case of CG (Conjugate Gradient), the performance ratio
is considerable, because CG requires irregular memory access
and communication.

In Fig. 11b we show the results of the bandwidth compar-
ison. Unlike the torus and the dragonfly, the fat-tree provides
higher bandwidth as compared with the proposed topology.
Bisection bandwidth is higher by 53%. This is because the
fat-tree is designed with full bisection bandwidth as described
in Section 6. 1. 3. Our results indicate that, even if the bisection
bandwidth is high, the performance is not always high.

In Fig. 11c we show the results of the power comparison.
As with the case of power comparison with the dragonfly, the
power consumption of both topologies is almost proportional

to the number of connectable hosts. From the figure we find
the fat-tree consumes the largest power consumption among
the three conventional topolgoies.

In Fig. 11d we show the results of the cost comparison. The
fat-tree requires the largest cost among the three conventional
topologies. Furthermore, unlike the torus and the dragonfly,
the cable cost of the fat-tree is also higher than that of the
proposed topology.

Overall, as compared with the fat-tree, the proposed topol-
ogy drastically improves performance with lower power con-
sumption and cost, although the bandwidth is lower. This
results indicate that the h-ASPL is the important metrics for
HPC as well as the bandwidth.

7. CONCLUSIONS

In this paper we have introduced a host-switch graph,
a model of interconnection networks including hosts and
switches. This model enables comprehensive study of inter-
connection networks. Our study focuses on reducing host-to-
host average shortest path length (h-ASPL) and establishes
a new optimization problem called the order/radix problem:
given order and radix, find a host-switch graph with the
minimum h-ASPL. For this problem, we show the lower bound
on the h-ASPL and present a randomized algorithm. We show
the optimal number of switches that provides the minimum
h-ASPL, say mopt, can be predicted by the Moore bound. We
then proposed the topology with the mopt switches.

We have compared the proposed topology with conven-
tional topologies listed in Top500, the torus, the dragonfly,
and the fat-tree, in terms of performance, bandwidth, power
consumption, and cost breakdown. Our results demonstrate
that, when the number of hosts is 1024, the proposed topology
outperforms all of the three topologies in terms of operation
per second for MPI applications by 12%–84% on average,
while our topology can reduce the number of switches by
20%–43%. Thus we have successfully demonstrated that our
method can directly be used for designing interconnection
networks.

Acknowledgment
This work was partially supported by the JST/CREST

program entitled “Research and Development on Unified
Environment of Accelerated Computing and Interconnection
for Post-Petascale Era” in the research area of “Development
of System Software Technologies for post-Peta Scale High
Performance Computing”.

REFERENCES

[1] M. Miller and J. Širáň, “Moore graphs and beyond: A survey of the
degree/diameter problem,” Electronic Journal of Combinatorics, vol.
DS14, pp. 1–61, electronic only, 2005.

[2] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter
network topology,” in Proc. of the Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis, Nov. 2014, pp. 348–359.

[3] R. Mizuno and Y. Ishida, “Constructing large-scale low-latency network
from small optimal networks,” in Proc. of the Int’l Symp. on Networks-
on-Chip, Sept. 2016, pp. 1–6.

[4] “GraphGolf: the order/degree problem competition,” http://research.nii.
ac.jp/graphgolf/, 2017.

http://research.nii.ac.jp/graphgolf/
http://research.nii.ac.jp/graphgolf/

[5] “Top500 supercomputer sites,” https://www.top500.org/, 2017.
[6] B. Bollobás and F. R. K.Chung, “The diameter of a cycle plus a random

matching,” SIAM Journal on Discrete Mathematics, vol. 1, pp. 328–333,
1988.

[7] P. Erdős and A. Rényi, “On random graphs I,” Publicationes Mathemat-
icae (Debrecen), vol. 6, pp. 290–297, 1959.

[8] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440–442, 1998.

[9] B. Bollobás, “The isoperimetric number of random regular graphs,”
European Journal of Combinatorics, vol. 9, pp. 241–244, 1988.

[10] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova, “A
case for random shortcut topologies for HPC interconnects,” in Proc. of
the Int’l Symp. on Computer Architecture, June 2012, pp. 177–188.

[11] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Proc. of the 9th USENIX conference on
Networked Systems Design and Implementation, Apr. 2012, pp. 17:1–
17:14.

[12] U. Y. Ogras and R. Marculescu, “It’s a small world after all: NoC
performance optimization via long-range link insertion,” IEEE Trans.
on VLSI Systems, vol. 14, pp. 693–706, July 2006.

[13] M. Koibuchi, I. Fujiwara, H. Matsutani, and H. Casanova, “Layout-
conscious random topologies for HPC off-chip interconnects,” in Proc.
of the Int’l Symp. on High Performance Computer Architecture, Feb.
2013, pp. 484–495.

[14] J. Flich, T. Skeie, A. Mejı́a, O. Lysne, P. López, A. Robles, J. Duato,
M. Koibuchi, T. Rokicki, and J. C. Sancho, “A survey and evaluation
of topology-agnostic deterministic routing algorithms,” IEEE Trans. on
Parallel and Distributed Systems, vol. 23, pp. 405–425, 2012.

[15] K. Nakano, D. Takafuji, S. Fujita, H. Matsutani, I. Fujiwara, and
M. Koibuchi, “Randomly optimized grid graph for low-latency inter-
connection networks,” in Proc. of the Int’l Conf. on Parallel Processing,
Aug. 2016, pp. 340–349.

[16] N. Shimizu and R. Mori, “Average shortest path length of graphs of
diameter 3,” in Proc. of the Int’l Symp. on Networks-on-Chip, Sept.
2016, pp. 1–6.

[17] T. Kitasuka and M. Iida, “A heuristic method of generating diameter
3 graphs for order/degree problem,” in Proc. of the Int’l Symp. on
Networks-on-Chip, Sept. 2016, pp. 1–6.

[18] R. Cohen and S. Havlin, “Scale-free networks are ultrasmall,” Physical
Review Letters, vol. 90, Feb. 2003.

[19] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network inspired
data center architecture,” ACM SIGCOMM Computer Communication
Review, vol. 40, pp. 5–12, Oct. 2010.

[20] C. L. Seitz, “The cosmic cube,” Communications of the ACM, vol. 28,
Jan. 1985.

[21] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Proc. of the Int’l Symp. on Computer
Architecture, June 2008, pp. 77–88.

[22] K. Antypas, N. Wright, N. Cardo, A. Andrews, and M. Cordery, “Cori:
a cray xc pre-exascale system for nersc,” in Proc. of cray user group
conference, May 2014.

[23] S. R. Alam, T. Athanassiadou, T. W. Robinson, G. Fourestey, A. Jocksch,
L. Marsella, J.-G. Piccinali, J. Poznanovic, B. Cumming, and D. Ulmer,
“First 12-cabinets cray xc30 system at cscs: Scaling and performance
efficiencies of applications,” in Proc. of cray user group conference,
May 2013.

[24] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Trans. on Computers, vol. C-34, pp. 892–901,
Oct. 1985.

[25] W. D. Hillis and L. W. Tucker, “The CM-5 connection machine: a
scalable supercomputer,” Communications of the ACM, vol. 36, Jan.
1993.

[26] X.-K. Liao, Z.-B. Pang, K.-F. Wang, Y.-T. Lu, M. Xie, J. Xia, D.-Z.
Dong, and G. Suo, “High performance interconnect network for tianhe
system,” Journal of Computer Science and Technology, vol. 30, Mar.
2015.

[27] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers, “Titan: Early experience with the cray xk6 at oak ridge national
laboratory,” in Proc. of cray user group conference, May 2012.

[28] M. Moudi and M. Othman, “The challenge of interconnect topologies to
improve communication in supercomputers,” in Proc. of the Int’l Conf.
on Recent Trends in Information Processing & Computing, Dec. 2012,
pp. 137–144.

[29] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. of the ACM SIGCOMM
Confeence, Aug. 2008, pp. 63–74.

[30] “SimGrid: Versatile Simulation of Distributed Systems,” http://simgrid.
gforge.inria.fr/, 2017.

[31] “The NASA Advanced Supercomputing (NAS) Parallel Benchmarks,”
http://www.nas.nasa.gov/Software/NPB/, 2017.

[32] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, pp. 359–392, Aug. 1998.

[33] P. Elias, A. Feinstein, and C. E. Shannon, “A note on maximum flow
through a network,” IRE Transactions on Information Theory, vol. 2,
pp. 117–119, Dec 1956.

APPENDIX

Let a clique host-switch graph denote a host-switch graph
such that all the switches constitute a clique. For any clique
host-switch graph, each switch must be connected with exactly
m−1 switches. Here, we prove that a host-switch graph with
the lowest h-ASPL for given n and r is a clique host-switch
graph. First, we have the following lemma.

Lemma 3 A clique host-switch graph with the lowest h-ASPL
has the minimum possible number of switches.

Proof: Suppose that a clique host-switch graph with
the lowest h-ASPL G has m switches while a clique host-
switch graph with m′ switches (m′ < m) can be constructed.
We can then reduce h-ASPL of G by removing a switch si
and reconnect hosts connected with si to another switch, a
contradiction.

Lemma 3 leads to:

Corollary 1 Let ki denote the number of hosts connected with
si. A clique host-switch graph with the lowest h-ASPL satisfies
ki ≥ m for all i (0 ≤ i ≤ m−1).

Here, we can derive the following theorem:

Theorem 3 For fixed n and r, there exists a clique host-switch
graph that has the lowest h-ASPL.

Proof: Let G be a clique host-switch graph such that ki ≥
m for all i (0 ≤ i ≤ m− 1) and the number of switches is
minimum. From Lemma 3, G is a clique host-switch graph
with the lowest h-ASPL. Let G′ be a host-switch graph with
parameters n, m′, and r, which is not a clique host-switch
graph. Let us consider construct G′ from G, and compare A(G)
and A(G′):

Case 1: m′ > m
Trivially, A(G′)≥ A(G) holds since ki cannot increase.

Case 2: m′ ≤ m
To increase ki, we must cut an edge (si,s j) (i ̸= j) and
reconnect a host to si. If we cut the edge, then the h-ASPL
increases by at least ki · k j/

(n
2
)
. If we reconnect a host to si,

then the h-ASPL decreases by at most ki/
(n

2
)
. Hence, the h-

ASPL does not increase only if k j < 2. From Corollary 1, G
satisfies k j > m, and G′ satisfies k j < 2 only after cutting at
least m−2 edges connected with si. After cutting m−2 edges,
however, si has only one edge, and hence we cannot cut an
edge any more. Therefore, A(G′)≥ A(G) holds.

https://www.top500.org/
http://simgrid.gforge.inria.fr/
http://simgrid.gforge.inria.fr/
http://www.nas.nasa.gov/Software/NPB/

